13.1 Frequency domain analysis and FFT

Frequency domain analysis, in particular the so-called Fast Fourier Transforms (FFT), is a
standard computational tool in many branches of science. The original approach was
developed by Gauss and over a number of years it has been used as a very efficient method of
improving the computational economy. We will open this chapter by considering a few
examples to illustrate how to use spectral analysis and how to interpret the results. Once
we’ve done this, we’ll dive deeper into how to do it.

Fig. 13.1.1 shows a typical seasonal time series graph:

Fig. 13.1.1 Monthly mean temperatures in Central England Jan 90 —Aug 04

The above series is presented in the time domain, which means that every observation is
recorded chronologically on the ‘x’ axis. If the series, for example, constitutes monthly data,
then an observation for one month represents 1/12 of the year, although not necessarily a
proportional part i.e. not all the values for all the months are the same. If we translate the
series from a time domain into a frequency domain, the same series will look like Fig. 13.1.2.
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Fig. 13.1.2 Periodogram by period for Monthly mean temperatures in Central England

The ‘x’ axis consists of periods. Clearly the periods in Fig. 13.1.2 are not equally spaced. The
scale is chosen to be logarithmic (as is the y-axis), otherwise it would be impossible to
squeeze everything on one page. We can take one more step and change periods into
frequencies (as in Fig. 13.1.3), which is yet another way of representing the same series.
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Fig. 13.1.3 Periodogram by frequency for Monthly mean temperatures in Central England

Let us explain the difference between these two concepts and what exactly do we see in these
two graphs.

The word cycle usually implies that something will go up and down and will repeat itself
after a period of time. If our time series of length ‘n” consists of the shortest possible cycle
(one up, one down observation interchangeably), then the maximum number of cycles for this
frequency is n/2. This means that the number of cycles can reach maximum for 50% of the
number of observations. If, on the other hand, the whole series consists of just one cycle, then
the frequency is only 1/n. The lowest frequency possible has zero cycles, which means there
is no cycle at all. Frequencies are, therefore, calculated as the number of times the cycle
repeats itself in a series over the total number of observations.

An alternative way of looking at this is to say that if we have monthly data, then one cycle
constitutes of 12 months. The frequency of this series is 1/12 cycles per year. This effectively
tells us what we have already stated, that the frequencies and periods are reciprocals of one
another. Because the peak in the graph in Fig. 12.1.2 shows number 12, this indicates that the
periodicity of the series is 12 months. On the other hand, the graph in Fig.12.1.3 shows the
highest frequency to be 0.08 (which is if we divide 1/12), confirming that these two graphs
show one and the same thing, just from a different point of view. By the way, looking at other
frequencies on the graph in Fig. 13.1.2, we can see that the second highest frequency is
period six, which is equivalent to 0.17 (i.e. 1/6) in Fig. 13.1.3).

So, if frequencies are reciprocals to periods, then the above periodogram as in Fig. 13.1.2 can
be presented as frequency periodogram (Fig. 13.1.3). The graph in Fig. 13.1.3 is also called
the power spectrum, sometimes referred to as S(f), or as P(w) if expressed as a function of the
angular frequency (more about this further down). The power spectrum is the sum of the
squares of individual sine and cosine terms that characterises the series at every frequency,
and we will explain this shortly.

At each frequency, a time series can be presented as a weighted sum of a sine and cosine
component having that frequency. In other words, if we square and add up all the sine and
cosine weighting at a particular frequency, we will get the original series. This is a very
important point, emphasising that spectral analysis does not change or skew data. It merely
looks at the same data from a different, a frequency point of view. By having the spectral



analysis data, we can actually reconstruct the original series without knowing how this series
looked in the first place, as we also will show later.

This also implies that different time series will have different characteristic periodograms,
which can be perceived as signature periodograms. A white noise process is typically
characterised by broad-band power spectra. Without getting into details, a general rule is, the
rougher the series, the more high frequencies it has. The smoother the series, the more low
frequencies its spectrogram will have. As we already said, if a series is very ‘jumpy’, then it
will have close to n/2 cycles. If for example, on the other hand, the series has n/2 cycles, we
need to know that additionally it will have a constant with frequency zero. As every cycle is
either a sine or cosine wave, the series could, in this case, be described by using (n/2)+1
coefficients. Generally, the number of cycles, plus the zero frequency is the number of terms
that will define every series.

As the spikes in periodograms are sometimes difficult to position, or could be misleading due
leakage and aliasing (engineering terms that go beyond the scope of this book), various
people have applied a number of smoothing transformations to make the data more
presentable. These transformations are called the ‘windows’ and they represent spectral
density estimates. The most famous windows, used in many software packages are: the
Tukey-Hamming window, the Parzen window and the Bartlett window. Fundamentally, they
all take the actual observations and/or multiply them with some constants and/or other
function values to make the peaks easier to interpret and “decipher” visually. The graphs
showing such transformed frequencies are often called spectrograms, power spectra or
spectral density estimates. Fig. 13.1.4 is an example of the Tukey-Hamming window
showing spectral density estimates for the above series:
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Fig. 13.1.4 Spectral density by frequency for Monthly mean temperatures in Central England

To relate the power spectrum to some of the terminology from previously described methods,
we need to state that the power spectrum or power spectral density, as it is often called, is
the inverse Fourier transform of the autocovariance or autocorrelation function (remember
that autocorrelation is just normalized autocovariance function). Effectively, the power
spectrum and the autocovariance are Fourier transforms of each other. This makes these two
concepts interchangeable and it is, almost, a matter of preference in which space to operate
and conduct an analysis. Some scientists talk in terms of power spectra or spectral density,
whilst others use the terms autocovariance or autocorrelations. They are talking of the same



thing, and it is their background that makes them more comfortable to think in one paradigm
or the other.

We will now dive into some of the details of this approach to analysis and illustrate how to
use it on a practical level. We’ll start with a modest amount of theory.

You will recall from earlier chapters that the most common way of approximating a function
is to use a standard polynomial equation. We have used, for example, a formula y=a+bx+cx?
to describe parabola, which we tried to fit to a data set, i.e. a time series. However, some data
sets defy all the rules and it is almost impossible to find a polynomial equation that fits them.
Imagine a function pulsating at regular intervals, i.e. showing some periodic movements.
Mathematicians would say that if ‘T is the period length, then a general function describing
such a series is f(t)=f(t+T). In order to deal with periodic functions our best option is to use
some sort of a sinusoidal function. One such formula used to approximate periodic functions
is:

f(t) = A sind (13.1.1)

Where, A defines the amplitude, i.e. the height of the oscillation and 6 is the angle. Fig.
13.1.5 visualises these concepts.
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Fig. 13.1.5 Connection between periodicity and circular movement

From the above picture we can see that as the angle 6 changes, so does the value of the
function y=f(t). The function will start at A=0, reach its maximum at +A, then it will cross
the x axis (again A=0), reach its minimum at —A and finally return to A=0. This will all
happen inside a periodic interval T. As sinusoid is a representation of the circular movement
of A, this means that T can be also be interpreted as T=360°, or 2x radians, which is the full
periodicity of a sine wave.

From the Fig. 13.1.5 we can also observe that A rotates at some regular (constant) angular
velocity , which means that in time t, the angle 0 is:

0 = ot (13.1.2)
We can, therefore write equation (13.1.1) as:

f)=Asinot (13.1.3)



We have said that a periodic function repeats itself after a time “T’. This is applicable if we
present the function in the so-called time space. However, the same function can be presented
in a frequency space. To do so, we need to define the frequency as:

f== 13.14
= (13.1.4)

If we do this, the complex relationship between the time and the frequency space can be
visualised in a three-dimensional graph as in Fig. 13.1.6.
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Fig. 13.1.6 Connection between the time and frequency space

A time needed to complete one full cycle, at an angular velocity of o is 360%w, or 2n/w. In
this case a periodic time T is:

T_2m (13.1.5)
(V)

Combining (13.1.4) and (13.1.5) we get:

(O]
f=2 13.1.6
o (13.1.6)

This means that ®=2=f, which also implies that (13.1.3) can be written as:
f(t) = Asin2r ft (13.1.7)

The above explanations depended on two assumptions, the first one was that we start with
A=0 and the second one that we express circular movements as a sinusoid. Neither of the two
assumptions are really necessary. We could have used cosine function to achieve exactly the
same effect, or we could have started not from 6=0, but from some other angle ¢. If this was
the case, ¢ is the phase angle.

This also implies that the phase space can be presented in two forms, one where the
frequency depends on amplitude and the other where it is dependent on the phase shift (see
Figs. 13.1.7-8). These two plots represent the frequency spectrum.
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The phase shift defines by how much the sinusoid is shifted horizontally. If the phase shift is
positive, then it is said to be a leading phase angle (or shift). If it is negative, it is referred to
as a lagging phase shift. We decided that the rest of this chapter will not focus on phase
spectrum, but on amplitude spectrum, which is more intuitive to non-engineers.

We said that o = 2xf, or © = 27/T, which is often called the fundamental frequency. The
multiples of this fundamental frequency (20 ,3® ,4®, ...) are called harmonics. This is the
point we enter the world of Fourier analysis. Fourier ingeniously discovered that infinite
series of harmonically related frequencies can fit virtually any periodic function. This is
called a Fourier series. If we take a look at a discrete version of this equation, it is written
concisely as:

N-1

1
(t) ==ay+ (axcos2mkt + by sin2mkt) (13.1.8)
2
k=1

Or

f(n) = 1a +Nz_:1<a cos (kznn) + bysin(k 27Tn)) (13.1.9)
=50 k -~ k ~ L.
2 ) N N

The two alternative expressions above are called a Fourier series. To calculate the coefficients
for the either of the two expressions above, we need to use the observation values Xn:

1 N-1
Ao =5 ) *n (13.1.10)
n=0
N-1
2 2mkn
A = ) *n cos( N ) (13.1.11)
n=0
N-1
2 - (2mkn
b, = N2, xn sm( N ) (13.1.12)



The line spectra of the function is a phase space (see Fig 13.1.8), i.e. a graphical
representation of a complicated function f(t) such as the one described by equation (13.1.9),
but more about that in a minute.
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Fig. 13.1.9

However, many functions are quasi periodic, or not periodic at all. Although so far, we only
referred to fitting periodic series, the same approach can be used for non-periodic time series.
The trick is to assume that a non-periodic wave is just like a periodic one, but the one for
which the periodicity approaches infinity. However, we will here concentrate on discrete
functions only as majority of time series in business, economics and finance fall in this
category.

Before we do this, in order to define Fourier transforms, we will use Euler’s formula:
e = cos X + i sin x (13.1.13)

We’ll turn this other way around and say that the cosines and sines can also be expressed in
terms of complex numbers:

0i0 4 o=i0 _ plf_ o—i6
and sin @ =

cosf = (13.1.14)

2i
In this case, if we substitute all the coefficients ax and bk in the equations (13.1.9) and express
the cosine and sine terms as complex numbers, then the discrete Fourier transforms (DFT) are
defined as:

F, = Xpe N (13.1.15)

Where:

Fk = Fourier transform coefficients expressed as complex numbers
Xn = observations (i.e. the function)

k= number of complex coefficients

N = number of observations

n = number of samples n = 0 to N-1 (same as k)

I = imaginary number



It is important to remember that the Fourier transform applies to non-periodic functions, as
opposed to the Fourier series, which applies to periodic functions.

So, if a Fourier series is a linear combination of oscillations, then every frequency in it
oscillates at an integer multiple of the basic frequency. This is effectively a spectrum of the
periodic function and it is often written as S(f). If the function is not periodic, the spectrum
does not consist of multiples of the basic frequency but is a continuum. In this case the
spectrum is represented by Fourier transforms.

From the equation (13.1.15) it is obvious that the Fourier transform is a complex function
(containing 'i' numbers). Effectively, the Fourier transform is an extension of the Fourier
series because the basic periodicity is allowed to become infinitely large, which means the
function is no longer periodic!

Because we restricted the range of the function given by equation (13.1.15) from n=0 to N-1,
this will lead us directly towards Fast Fourier Transforms (FFT). FFT is a well know
algorithm used to calculate Fourier transforms. Excel also uses this method to calculate
discrete Fourier transforms (DFT or F as in the above equation). However, there are two
restrictions in Excel, the first one is that the maximum number of observations (or maximum
number of Fourier transforms) is 4096 and the number of transforms is restricted to 2", which
means that we can only calculate the number of transforms that correspond to 4, 8, 16, 32, 64,
..., 4096 of them.

OK, let’s use a hypothetical discrete time series and calculate the discrete Fourier transforms
for this time series. We will use equation (13.1.15) to achieve this.

If we take the exponent to be iz’;vkn = b, then this DFT can be expressed as:
F, = xge b0l + x;e7 D1t 4 ... 4 x @7 bN-11 (13.1.16)

As per Euler’s formula: e¥* = cos x + i sin x, which means that DFT can be expanded as:

F, = xg[cos(—by) + i sin(—by)] + x1[cos(—by) + i sin(—by)] + -+ +
Xn[cos(—by_1) + i sin(—by_q)] (13.1.17)

This implies that the final result of a DFT is a mixture of real and imaginary components. In
other words, DFT is a complex number:

Because Fk is a complex number, it resides in a two-dimensional space, where the x axis is

the real part and the y axis is the imaginary part of this complex number. The complex
number is the intersection of these two parts (the real and imaginary part).
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To calculate the distance from the origin, we can use the Pythagorean theorem which says
that ¢ =+a?+ b2. Inour case it is calculated as:

M, = /A2 + B2 (13.1.19)

Another word that is used for M is that it is a modulus of the complex number, or the
magnitude. In the picture above we can also see the angle 6. This angle can also be calculated
from Ax and Bk as an arc tangent:

0 = tan~12k (13.1.20)
Ak

If we present this in a time space, and let’s assume that our signal is a sinusoid, then these
values represent the following:

A

v

We can see that the magnitude My (which was calculated as a modulus) is in fact the
amplitude of the wave and that 0 is the phase shift (which we already know). To calculate
discrete Fourier Transforms (Fx) we can use either equation (13.1.15), or the one with the
sinus and cosine version (13.1.17) based on Euler transformation. Although (13.1.17) might
appear to be a bit easier to handle manually, because we will rely on Excel, equation
(13.1.15) is in fact easier to use.

Let’s assume that we have the following, very short, time series consisting of only 8
observations:
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Fig. 13.1.12

For every time observation at the point n, we need a frequency value at the point k. As we
have 8 observations, we will need to calculate 8 DFTs. They will be calculated, using
equation (13.1.17) as:

—iX2X314X0X0 —iX2X314X0X1 —iX2X314X0X2 —iX2X314X0X7
Fy = xpe 8 + xq€ 8 + xye 8 + -+ xse 8

—iX2X314X1X%X0 —iX2X314X1X1 —iX2X314X1X2 —iX2X314X1X7
F; = xqe 8 + xq€ 8 + xye 8 + -+ xqe 8

—iX2X314X7X0 —iX2X314X7x1 —iX2X314X7X2 —iX2X314X7X7
F, = xye 8 + xq€ 8 + xye 8 + -+ xse 8

Because the coefficients that were calculated using equation (13.1.15) are complex numbers,
as shown in equation (13.1.18), from there we can calculate the modulus for every coefficient
using the equation (13.1.19). This means that for every value of k, we get a series of
magnitudes for every complex number:

My = /A2 +BZ M, = /A2 +B2, ..., M; = \[AZ + B2

And finally, to calculate the amplitude at every frequency, we double the magnitude and
average it over the number of observations:

Ay = My~ (13.1.21)

The factor % that we used to multiply the modulus, provides just the normalization of the

coefficients for the length of the series (in fact, the normalization is achieved by dividing Mg
by N/2, which is the same as multiplying by 2/N). The next step is to calculate the power
spectrum.

Let’s use a short example and take only 8 amplitudes and present them as a bar chart:
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To finish the job, we need to calculate the power coefficients for the power spectrum, which
means that:

P, = A; (13.1.22)

The only exception is that the first coefficient Py for the O frequency has to be divided by 2.
In summary, for our artificially short example, we have:

k Fk Ak Pk

0 300 75 2812.5
1 -20 +5.85i 5.21 27.145
2 -20 +20i 7.07 50

3 -20-34.14i  9.89 97.855
4 -20 5 25

5 -20 +34.14i  9.89

6 -20 -20i 7.07

7 -20 -5.85i 5.21

A series of these power coefficients Pk represents the power spectrum, also called spectral
density function.

These power spectrum coefficients as presented as vertical bars against every frequency. The

number of frequencies is the same as the number of observations, so this power spectrum for
our mini series looks as this:

Fig. 13.1.14



As we can see, the graph is very much like the amplitudes graph, but because the first value is
very large, all the subsequent values look very small. In practise, you would omit showing the
amplitude for zero frequency, as it distorts the picture. The squaring of the amplitudes will
help us see larger amplitudes even better, if we drop the zero-frequency power coefficient.

However, we can make some improvements. In our case the frequencies were not defined, so
we took them as just sequential numbers. However, if there is a time stamp for every
observation, then we can calculate the frequencies. For example, if data represent monthly
value, and we know that one month is one twelfth of the year, then the frequency for every
DFT that we calculate will be 1/12, which is 0.083. In this case, 0.083 will be the first
frequency, the next one will be 2 x 0.083 (0.166), the third one 3 x 0.083 (0.25), etc.

What happens if we are taking specific measurements, like microphone recording, for
example? Let’s say that we captured 256 points (N=256), in 3 seconds (T=3). The time
between every point is At = T/N = 3/256 = 0.0117 seconds. From this value, we can calculate
the sampling frequency, which is fs= 1/At = 1/0.0117 = 85.3. The sampling frequency is
given in Hz, which means that we have captured 85.3 signals in one second. And finally, we
can also calculate the frequency increments, which are Af = 1/T = 1/3 = 0.33. When we
calculate our power coefficients, they will be presented as bars against these frequencies, in
other words, the first frequency will be 0.33, the second one 2 x 0.33 (0.66), 3 x 0.33 (0.99), 4
x 0.33 (1.33), etc.

You noticed that in the above simple example with only 8 observations we calculated only
five power coefficients. There is a reason why it is not necessary to go beyond certain
number of power coefficients.

We calculated DFTs for the full range of frequencies, which in our simple case was 8.
However, if we look at the graph below, which is a typical power spectrum graph of a much
larger time series, we can see that the left hand side of the picture is repeated on the right
hand side of the picture.

Fig. 13.1.15

This means that we only need half of the coefficients. The frequency at which the data begin
to repeat themselves is called a folding frequency and it has been suggested by Nyquist, so
some people call it the Nyquist frequency. Effectively, folding frequency is fi=fs/2 (if
continue with an example for 256 points, then fr= 85.33/2 = 42.6). This frequency is also
expressed in Hz, so it means that there is no point calculating, or showing, the magnitudes



and power coefficients beyond this frequency. As we can see, it will always be half way
through the range.

If we take our simple 8-point case, the specific values are:

N = 8 observations

T=2sec

At=T/N =2/8 = 0.25 sec

fs=1/At=1/0.25=4 Hz

Af=1/T =1/2 = 0.5 a frequency increment in Hz

fr= /2 = 4/2 = 2 Hz maximum frequency value for calculating power coefficients

So, the frequency increments will be 0.5 Hz, starting from zero, and will go to a max value of
2 Hz. In this case, our final power spectrum looks as follows:

Fig. 13.1.16

That’s all there is to it. If we used Excel, the calculations would have been even easier. Excel
has a built in FFT function and you can find it under Data tab, and then under Data Analysis
option. Once you clicked on it, it will bring a dialogue box and you need to select Fourier
Analysis option. This option brings another dialogue box:
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Fig. 13.1.17

Our simple case of eight values is in A2:A9 and the result we would like to be placed starting
from cell B2. What we get is as follows:
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20300

40 -20+5.85786437626906i

30 -20420i

50 -20-34.142135623731i

4020

30 -20+34.1421356237309i

50/-20-20i

40 -20-5.85786437626905i
Fig. 13.1.18
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Column B shows the values obtained by Excel by applying FFT (Fast Fourier Transforms),
which in our case, because we took discrete values are, called DFT (Discrete Fourier
Transforms). From these values, we need to calculate the amplitudes, and finally the power
spectrum coefficients. To calculate the magnitudes, we use a simple Excel function for
calculating the modulus, which is called =IMABS(). To convert the magnitudes into
amplitudes, we multiply them by 2 and divide by the number of observations. If our Fourier
coefficients were in cells B2:B9 and let’s say we want to put the amplitudes in B31:B38, then
in every cell we have a formula =2*IMABS(B2)/COUNT($A$2:$A$9),
=2*IMABS(B3)/COUNT($A$2:$A3$9), etc. The only exception is cell B31, which is just
=IMABS(B3)/COUNT($A$2:$A3$9) as per equation (13.1.23), described below.

And finally, to get the power spectrum coefficients, we just multiply Ax x A, except that the
first one has to be divided by 2. We calculated them in cells C30:C38. The values for both Ax
and Py are given below. Again cell C31 is an exception, as per equation (13.1.27) below.

B =

30 [Amplitude Power spectrum
31 375 703125
32 5.210053833 27.14456094
33 7.071067812 50
34 9 892185757 07.85533906
35 5 25
26 9.892185757
37 7.071067812
38 5210053833
30 | =2*|MABS(B9)/COUNT|SAS2:SAS0) =B38A2

Fig. 13.1.19

Let’s just recap what we explained here and emphasise that the first amplitudes and powers
are calculated differently from the rest..

To calculate properly normalized amplitudes Ax, we differentiate the case for k=0 and all other
fork=1,2, ..., (5 -1).

For k=0, the amplitude is calculated as:



N-1

(13.1.23)

13.1.24)

Effectively, the equations (13.1.23) and (13.1.24) can be rewritten as:

For k=0 A =~ 1Fyl
For k>0 Ay = % | F |
The Fourier power is calculated as:
For k=0 PSDy(Fy) = =

2
Ak
2

For k>0 PSD,(F,) = Az

Sometimes, the power spectrum is specified as:

FyFy
N2

PSDy(fi) =

(13.1.25)

(13.1.26)

(13.1.27)

(13.1.28)

(13.1.29)

Where, F;; is a complex conjugate of F,, which means that the sign of the imaginary part of Fy
is reversed. Remember that if you multiply a complex number with its conjugate, you always
get the same outcome, e.g. (a+bi) x (a-bi) = a®> + b?, which takes us back to our equation

(13.1.19).

What if you wanted to check that Excel correctly calculated the Fourier transforms? Well,
this can be done easily. In C2:C9 below we are showing the same values calculated using
Excel functions as opposed to cells B2:B9 that were calculate using Excel Ad in for Fourier

Analysis.

A B

Excel automatic

ko

r
20300
30 -20+20i
ao20

30 -20-20i

[T R R = S R S U . R

40 -2045.85786437626906i1

50 -20-34.1421535623731i

30 -20434.1421356237309i1

40 -20-5.85780437626905i1

C

Manual single formula

300
-20.0000000000002+5.85786437626896i
-19.9999999599994+19.9999999999998]
-20.0000000000027-34.1421356237309i1
-20-5.80685673157162E-131
-20.0000000000009+34.14213562373140
-20.000000000002 5-20.0000000000037 i
-20.00000000000435-5. 85780437027 2451

Fig. 13.1.20



The formula for C2 is very long and it reads:

=IMSUM(IMPRODUCT (A2,IMEXP(COMPLEX(0,-
(IMPRODUCT (2*P1()*0*0)/8)))),IMPRODUCT(A3,IMEXP(COMPLEX(O0,-
(IMPRODUCT (2*P1()*0*1)/8)))),IMPRODUCT (A4, IMEXP(COMPLEX(O0,-
(IMPRODUCT (2*P1()*0*2)/8)))),IMPRODUCT(AS5,IMEXP(COMPLEX(0,-
(IMPRODUCT (2*P1()*0*3)/8)))),IMPRODUCT(A6,IMEXP(COMPLEX(O0,-
(IMPRODUCT (2*P1()*0*4)/8)))),IMPRODUCT(A7,IMEXP(COMPLEX(0,-
(IMPRODUCT (2*P1()*0*5)/8)))),IMPRODUCT(A8,IMEXP(COMPLEX(O0,-
(IMPRODUCT (2*P1()*0*6)/8)))),IMPRODUCT (A9, IMEXP(COMPLEX(0,-
(IMPRODUCT (2*P1()*0*7)/8)))))

The cells below C3:C9 repeat this formula, but with the relevant change in parameters.
Essentially, we multiplying two complex numbers, hence the formula

=IMPRODUCT (complex numberl, complex number2). In our case the first complex number
is given by A2, A3, etc. The second complex number is given by function
=COMPLEX(IMPRODUCT(0, (2*PI1()*k*n/N). As n goes from 0 to 7, we used the function
=IMSUM() to collect all the values.

If this formula scares you, you can see in the enclosed spreadsheet how it was built. In D2:D9
we are showing gradual build up that resulted with the identical numbers as obtained with
one single formula, or as with automated Excel routine for Fourier analysis.

D
1 |Manual step by step
2 |300
3 |-19.9999999999999+5.8578643 76268081
-19.9999999999991+19.9999999999998i
-20.0000000000022-34.1421356237308i
-20-5.09631399581152E-13i
-20.0000000000035+34.1421356237335i
-20.0000000000018- 20.0000000000037i
-19.9999599999954-5.85 78643762083 3i

(== = T B

w

10

11

12

13

14

15

16

17

18

19

20 |To see D2:D9 formated in shorter form
21300

22 |-20+5.8581
23 |-20+20i

24 |-20-34.142i
26 [_9n

E F G H J K L M
k=0 k=1 k=2
k n -i2mkn/N  ef-i{27mkn F, -i2zmkn/N - en-i{27hkn F, -i2mkn/M  en-
] oo 1 20|10 1 20 ] 1
1 10 1 40(-0.785398 0.7071067 28.284271-1.570796 -3.4
2 20 1 30|-1.570796 -3.491456 -1.047436(-3.141592 -1-:
3 3|0 1 50]-2.3561594.-0.707106 -35.35533|-4.712388 -1.&
4 4|0 1 40(-3.141592 -1-3.2311:-40-1.2924-6.283185 1-3.
5 5|0 1 30]-3.926990 -0.707106 -21.21320|-7.853981 2.9°
] 60 1 50(-4.712388 -1.837722 -9.188613{-9.424777 -1-:
7 7|0 1 A0|-5.497787 0.7071067 28.284271-10.99557. 2.4«
to max N-1
| \ F(0)= 300 F{1)= -19.9999999999999+
= |/—'.2mzk\|
F, = X, 6N 7

Fig. 13.1.21

As you can see, although we can do it, it does not mean that we should. We should get Excel
calculate Fourier transforms and then just calculate the magnitudes from them (using the
=IMABS() function) and finally the power spectrum coefficients.



Before we proceed, just a short digression. The complex coefficients in cells D3:D9 in Fig.
13.1.21 are not formatted by Excel and they appear to be long and messy numbers. If you
would like to shorten them, a combination of several Excel functions can be used to achieve
this. In Fig. 13.1.21 cells D21:D28 are identical to cells D2:D9, but they are now showing to
just three decimal places. The formula we used in cell D21 and below is a combination of
Excel functions:
=COMPLEX(VALUE(TEXT(IMREAL(D9),"0.000")),VALUE(TEXT(IMAGINARY (D9),"0.000")))

We said that Fourier transforms is just another way of representing the same data set. This
means that we can revert the series of Fourier transforms back into the original time series
from which they were created. The only difference is that in the dialogue box (see Fig.
13.1.22) the input range is the Transform series and we have to tick the Inverse box.

Fourner Analysis

. oK
nput Range $CE2:40%9 -~

- Cancel
|| Labefs in First How

elp
Ouwept opbcns

®) Qutput Range $HEY
New Worksheet Py

L/ New Workbook

Below in Fig. 13.1.23 we used a simple example to demonstrate how the original series was
reconstructed from the inverse Fourier transforms with almost perfection. In column C we
have Fourier transforms calculated by Excel. Imagine that this was your starting point, i.e.
someone gave you just the list of Fourier transforms. To re-construct the actual time series
from them, as we did in column H, use the dialogue box as described in Fig. 13.1.22. See that
our column H is practically identical to column A, which proves the point.

Fig. 13.1.22

A B C D E F G H I J
1 | Time series Fourier transforms Original series
2 | 0.536799 ’3.91330499847005 '0.536798864401462
3 | 1.019828 1.16260751111195-0.380353337734352i ’1.01982762642813
4 | 0.553406 -8.2503737605037E-002-0.258760100288082i ’0.553405846748109
5 0.16638 -0.885364484196509-0.201689856642391i ’0.166380133502761
6 | 0.398177 ”.8.39266187916565E-003 ’0.398177350043741
7 | 0.089977 -0.885364484196509+0.201689856642393i ’8.99763388031646E-002
8 | 0.464074 -8.25037376050366E-002+0.258760100288082i '0.46407410620213
9 | 0.684664 1.16260751111195+0.38035333773435i ’0.684664231440501

Fig. 13.1.23 Fourier analysis results

To close the chapter, we’ll do one more example and show how to correctly interpret the
frequencies in the case where the frequency interval is not Hz, but years. Our example shows
average annual sunspot number from 1763 until 2018. Fig 13.1.24 shows only the first 27
rows.



A B c D E F G H I

1 Average anmual 256 N=Number of cbsenations 0 5 Folding frequancy =B2/2°B1)
2 sunspot example 256 T=Total time (number of years m thes case) 0.003906 Frequency incremants =(2°F 1yB2
3 256 ke=Number of DFT coefficients (k=12 N.1) -> Has to be 2°
4 Year Avig sunspot DFT Amplitude Frequency Power Col D calcs Col Ecalcs Col F calcs
5 1753 75.221097 6 82 4125 0 339591 =IMABSICS)SBSZ | #WA =05212
6 1764 60.7 692 35973479915+ 1482 52874 1450 15 12783058 00035063 163.4066 =2'IMABS(C5)SBS3  =F2 =062
7 1765 34.8 §75.923929167328+1705.9095950129i 14 988568 00076125 224 6572 =2"IMABS(CTyS853 =EG+3ES6 =072
8 1766 19 1407 3543362905-2260 91152305676l 20 805858 0.0117188 4328837 =2"IMABS(CBYSB8S3 =ET4SES6  =Dgx2
9 1767 63 783 776270093057-1798 55540897517, 15327454 0.015625 2349308
10 1768 116,3 -1843 05635029379-590 8073474789530 1512059 0.0195313 228 6322
" 1769 176.8 1446 40057368951 4365 6441726515061 11803684 00234375 139327
12 1770 168 64 04385807992501-411 293631587792 32519589 0.0273438 1057524
13 177 136 179.051136625666-280 457133283616 25995266  0.03125 6757539
14 1772 110.8 443 07141221667+767 3308969259321 69223731 00351563 47 91925
15 1773 58 438 677509887094.74 1570604985052 38615013 00390625 14 91119
16 1774 51 -314.614 120098559414 380805758083 40647042 00420688 1652182
17 1775 11,7 706 399013359959-1151 784 10273544 10 555859 0 046875 1114262
18 1776 33 29 5472801616621.350 9988685539811 27518775 00507813 757283
19 1777 154.2 65 3152701234725+486 03345994984 % 38316567 0.0546375 1463150
20 1778 257.3 443.295572817643-490. 794074792465/ 51668321 00585938 26 69615
21 1773 209.8 425 203613223411+373 559663633714 4 4238619 00625 1357055
22 1780 141.3 263 665998951663+ 1356 40810594098 10 795268 00664063 116 5383
23 1781 113.5 660 257220327154 941.32013007806% 8.9827552 0.0703125 8063989
24 1782 64.2 278 256939189274+293.267816 124876 31583468 0.0742188 9.975155
25 1783 38 82 9729751915464.546 158481986873 50895622 0078125 25 90364
26 1784 17 659 70558142159+399 T9556260283% 74071819 00820313 54 86634
27 1785 40,2 -3012 08952439818-1580 73546552457 26.62404 0.0859375 708.8395
28 1786 138.2 -3639.78980466607+3752 16333116523 41112815 00898438 1690 264 1113043478 in years
29 1787 220 1944 BE799858174-4765 73680085495 40213342 009375 1617 113
30 1788 218.2 454 630532036233-2561 7521634 139% 20326417 00976563 413.1632
31 1789 196.8 467 305221055069+2524 82035525496 20060175 01015625 4024106
Fig. 13.1.24

As we can see from cells B1:B3, we have 256 observations taken over 256 years. Cell F1
tells us that the folding frequency is 0.5, which means that we will calculate the power
coefficients only up to this frequency. We will start with the first frequency equal to 0 and
then add 0.003906 increments (see cell F2) until we reach the value of 0.5, which is the
folding frequency.

From Fig. 13.1.24 in column C we can see the DFT coefficients calculated by Excel, column
D shows the amplitudes, column E the frequencies, calculated as stated in the paragraph
above, and column F shows the power coefficients. All of this was calculated as explained
previously in this chapter, so we will not repeat explanations here. However, we will show
the final results and provide some further explanations. Fig. 13.1.25 depicts the final result as
a chart.



Fig. 13.1.25

In Fig. 13.1.25 we are showing all 128 coefficients against the frequency. It stops at 0.5. We
know that if we continued until all 256 coefficients were shown, we would get a mirror image
picture (see fig. 13.1.15) of the first 128 coefficients, which is the reason we stopped at 128"
coefficient, which corresponds to the frequency of 0.5.

If we eliminate the zero frequency, to see better, we get a graph as in Fig. 13.1.26. Next to it
is the same graph, but the x axis is shown as logarithmic. Some software packages do this, so
we just wanted to show that it has no relevance to our results.

Fig. 13.1.26

What we can is that the highest magnitude takes place at the frequency of 0.0898 (see graph
and cell F28 in Fig. 13.1.24). But what does that mean? Simple, if you take a reciprocal of
this number (remember T=1/f), you will get the value of 11.13. This simple step has moved
you back from the world of frequencies into the world of time but expressed as periodogram.
Because our values are annual, 11.13 are the years and it means that sunspots have
periodicity of approximately 11 years, which any astronomer can confirm is the fact.

| conducted another experiment, not shown here but you can find it in the attached
spreadsheet where | calculated the power coefficients for monthly sunspot data starting from
May 1934 until August 2019. This covers 1024 observations, so | calculated the same amount
of power coefficients. However, the point to remember is how the frequencies were
calculated and converted back into the time domain. We have the following calculation:



N = 1024 observations

At = 1/12 = 0.08333 this is the sampling interval, because we have monthly data
fr= 1/2At = 1/(2*0.08333) = 6 is the folding frequency

fs= 1/At = 1/0.08333 = 12 is the sampling frequency in months

Af = (2ff)/N = (2*6/1024) = 0.01171875 is a frequency increment

T = (NAt) = 1024*0.08333 = 85.3333 is the number of years as a decimal number

If you subtract from the end data the start date, you get 85 years, or 1024 months as the total
time. As a decimal number, this can be expressed as 85.3333. This number is also a
reciprocal if you take 1/Af (1/0.01171875).

When | completed my calculations, the highest amplitude is associated with the frequency
value of 0.09375. If we take the reciprocal value of that number (1/0.09375), we get 10.7
years, or if expressed as an integer this is ~11 years. Again, the same periodicity as for the
annual data. The key here is to realize how to create and convert frequencies from the time
domain and back.

To assist with different time units, sampling frequencies and increments in time, as well as in
frequency, we list here some of the fundamental equations to be remembered. To begin with,
here are the symbols that we will use:

N = Total number of discrete data points taken
At = Time between data points (sampling period)
T = Total sampling time

fs = Sampling rate (in Hz, for example)

fr = Folding frequency or Nyquist limit

Af = Frequency increments

We'll define the time increments At in which the signal is recorded as:

At=1=1 (13.1.30)

N  fs

From there, we can extract any of the variables:

T = NAt = fﬂ (13.1.31)
T

N=x=fT (13.1.32)
1 N

The folding frequency (Nyquist limit frequency) is defined as:



fr=b=Lt_X (13.1.34)

Af=-=——=b=2Y (13.1.35)

As we already know, according to the Nyquist criterion, the maximum number of DFTs that
should be calculated should not exceed fs/2. This mean that there is a number k, which we
multiply with the number of frequency increments Af, i.e. KAf, which should equal to fs/2.

We define kAf as:

kaf =& (13.1.36)

S
2

From (13.1.36), we can extract k as:

N
_ S _ T _N_Jr
k== =3 (13.1.37)
From there we can provide alternative equations for (13.1.34) as:
fr=b=YAr = kaf (13.1.38)

2 2

In Fig. 13.1.27 below we show how some of these variables can be extracted from one another.
The printout is too small, but the actual spreadsheet with all the solutions is available together
with all other Excel resources for this book.

..........

Fig. 13.1.27 Excel solutions for extracting various variables

Just to have total clarity about how some of these variables are used and interpreted, we’ll go
through one more brief example, this time typical for the engineering community (using Hz).

As an example, we take measurements over 2.56 seconds (T=2.56) at the rate of 100 Hz,
which is fs, i.e. 100 readings per second. This means that in total we have 256 observations
(N =T x fs). From there, we can calculate that we were taking samples every 0.01 second
(At=T/N=2.56/256).



As we will be using Excel that calculates DFTs using the FFT algorithm (more about that
very soon), only 2" number of Fourier transforms can be calculated (8, 16,32,64, 128, etc.), so
we decide to go for 256 DFT coefficients (k=256).

From there, we calculate what our frequency increments will be (Af=1/T or Af=fs/N), which
is 0.39. This means that the frequency bins will be:

fo=0,

f1=0+0.39=0.39,
,=0.39+0.39=0.78,
f3=0.78+0.39=1.17, ...,
f256=99.22+0.39=99.61 and
f257=99.61+0.39=100.00.

This covers the full range of frequencies from 0 to 100 Hz. However, we know that we do not
need to cover the whole range. We can calculate discrete Fourier transforms up to the Nyquist
frequency, or the folding frequency (fr=fs/2=50Hz). The total number of discrete Fourier
transforms that we need is 128 (k=128). Now that we have the frequency bins and know that
we need only 128 Fourier transform coefficients, we can proceed with the calculations.

Fortunately, if we do not handle engineering data, we do not have to worry about majority of
these details. We still just need the folding frequency and frequency increments.

And finally, what happens if you have longer, or shorter time series than 2" number of
observations? If it is longer, you just do not take into calculations any observations beyond
2", If it is short, you just add zeros to the missing time intervals to reach the 2" number. Here
is an example.

You have two annual time series, one starts in the year 1953 and finishes in 2019 and the
other one starts in 1963 and finishes in 2019. This means the first one is 66 years long and the
second one is 56 years long. You want to calculate 64 discrete Fourier transforms for each
time series and compare them. For the first one, ignore the first two years and calculate DFTs
between 1955 and 2019. For the second one, just add eight zeros below the actual readings of
the observation so that in total you have 64 observations (though the last 8 will be zeros).
This is called “zero padding” and will give you the correct value of the DFTs even if your
time series was shorter.



