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13.1 Frequency domain analysis and FFT 

 

Frequency domain analysis, in particular the so-called Fast Fourier Transforms (FFT), is a 

standard computational tool in many branches of science. The original approach was 

developed by Gauss and over a number of years it has been used as a very efficient method of 

improving the computational economy. We will open this chapter by considering a few 

examples to illustrate how to use spectral analysis and how to interpret the results. Once 

we’ve done this, we’ll dive deeper into how to do it. 

 

Fig. 13.1.1 shows a typical seasonal time series graph: 

 

 
 Fig. 13.1.1 Monthly mean temperatures in Central England Jan 90 –Aug 04 

 

The above series is presented in the time domain, which means that every observation is 

recorded chronologically on the ‘x’ axis. If the series, for example, constitutes monthly data, 

then an observation for one month represents 1/12 of the year, although not necessarily a 

proportional part i.e. not all the values for all the months are the same. If we translate the 

series from a time domain into a frequency domain, the same series will look like Fig. 13.1.2. 

 

 

 

 

 

 

 

 

   

  

  

 

   

Fig. 13.1.2 Periodogram by period for Monthly mean temperatures in Central England 

  

The ‘x’ axis consists of periods. Clearly the periods in Fig. 13.1.2 are not equally spaced. The 

scale is chosen to be logarithmic (as is the y-axis), otherwise it would be impossible to 

squeeze everything on one page. We can take one more step and change periods into 

frequencies (as in Fig. 13.1.3), which is yet another way of representing the same series.  
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Fig. 13.1.3 Periodogram by frequency for Monthly mean temperatures in Central England 

 

Let us explain the difference between these two concepts and what exactly do we see in these 

two graphs. 

 

The word cycle usually implies that something will go up and down and will repeat itself 

after a period of time. If our time series of length ‘n’ consists of the shortest possible cycle 

(one up, one down observation interchangeably), then the maximum number of cycles for this 

frequency is n/2. This means that the number of cycles can reach maximum for 50% of the 

number of observations. If, on the other hand, the whole series consists of just one cycle, then 

the frequency is only 1/n. The lowest frequency possible has zero cycles, which means there 

is no cycle at all. Frequencies are, therefore, calculated as the number of times the cycle 

repeats itself in a series over the total number of observations. 

 

An alternative way of looking at this is to say that if we have monthly data, then one cycle 

constitutes of 12 months. The frequency of this series is 1/12 cycles per year. This effectively 

tells us what we have already stated, that the frequencies and periods are reciprocals of one 

another. Because the peak in the graph in Fig. 12.1.2 shows number 12, this indicates that the 

periodicity of the series is 12 months. On the other hand, the graph in Fig.12.1.3 shows the 

highest frequency to be 0.08 (which is if we divide 1/12), confirming that these two graphs 

show one and the same thing, just from a different point of view. By the way, looking at other 

frequencies on the graph in Fig. 13.1.2, we can see that the second highest frequency is 

period six, which is equivalent to 0.17 (i.e. 1/6) in Fig. 13.1.3). 

 

So, if frequencies are reciprocals to periods, then the above periodogram as in Fig. 13.1.2 can 

be presented as frequency periodogram (Fig. 13.1.3). The graph in Fig. 13.1.3 is also called 

the power spectrum, sometimes referred to as S(f), or as P() if expressed as a function of the 

angular frequency (more about this further down). The power spectrum is the sum of the 

squares of individual sine and cosine terms that characterises the series at every frequency, 

and we will explain this shortly. 

 

At each frequency, a time series can be presented as a weighted sum of a sine and cosine 

component having that frequency. In other words, if we square and add up all the sine and 

cosine weighting at a particular frequency, we will get the original series. This is a very 

important point, emphasising that spectral analysis does not change or skew data. It merely 

looks at the same data from a different, a frequency point of view. By having the spectral 
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analysis data, we can actually reconstruct the original series without knowing how this series 

looked in the first place, as we also will show later. 

 

This also implies that different time series will have different characteristic periodograms, 

which can be perceived as signature periodograms. A white noise process is typically 

characterised by broad-band power spectra. Without getting into details, a general rule is, the 

rougher the series, the more high frequencies it has. The smoother the series, the more low 

frequencies its spectrogram will have. As we already said, if a series is very ‘jumpy’, then it 

will have close to n/2 cycles. If for example, on the other hand, the series has n/2 cycles, we 

need to know that additionally it will have a constant with frequency zero. As every cycle is 

either a sine or cosine wave, the series could, in this case, be described by using (n/2)+1 

coefficients. Generally, the number of cycles, plus the zero frequency is the number of terms 

that will define every series. 

 

As the spikes in periodograms are sometimes difficult to position, or could be misleading due 

leakage and aliasing (engineering terms that go beyond the scope of this book), various 

people have applied a number of smoothing transformations to make the data more 

presentable. These transformations are called the ‘windows’ and they represent spectral 

density estimates. The most famous windows, used in many software packages are: the 

Tukey-Hamming window, the Parzen window and the Bartlett window. Fundamentally, they 

all take the actual observations and/or multiply them with some constants and/or other 

function values to make the peaks easier to interpret and “decipher” visually. The graphs 

showing such transformed frequencies are often called spectrograms, power spectra or 

spectral density estimates. Fig. 13.1.4 is an example of the Tukey-Hamming window 

showing spectral density estimates for the above series: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.1.4 Spectral density by frequency for Monthly mean temperatures in Central England 

 

To relate the power spectrum to some of the terminology from previously described methods, 

we need to state that the power spectrum or power spectral density, as it is often called, is 

the inverse Fourier transform of the autocovariance or autocorrelation function (remember 

that autocorrelation is just normalized autocovariance function). Effectively, the power 

spectrum and the autocovariance are Fourier transforms of each other. This makes these two 

concepts interchangeable and it is, almost, a matter of preference in which space to operate 

and conduct an analysis. Some scientists talk in terms of power spectra or spectral density, 

whilst others use the terms autocovariance or autocorrelations. They are talking of the same 



thing, and it is their background that makes them more comfortable to think in one paradigm 

or the other.  

 

We will now dive into some of the details of this approach to analysis and illustrate how to 

use it on a practical level. We’ll start with a modest amount of theory. 

  

You will recall from earlier chapters that the most common way of approximating a function 

is to use a standard polynomial equation. We have used, for example, a formula y=a+bx+cx2 

to describe parabola, which we tried to fit to a data set, i.e. a time series. However, some data 

sets defy all the rules and it is almost impossible to find a polynomial equation that fits them. 

Imagine a function pulsating at regular intervals, i.e. showing some periodic movements. 

Mathematicians would say that if ‘T’ is the period length, then a general function describing 

such a series is f(t)=f(t+T). In order to deal with periodic functions our best option is to use 

some sort of a sinusoidal function. One such formula used to approximate periodic functions 

is: 

 

    f(t) = A sin       (13.1.1) 

 

Where, A defines the amplitude, i.e. the height of the oscillation and  is the angle. Fig. 

13.1.5 visualises these concepts.  

 

    

 

 

 

 

 

 

 

 

 

 

  Fig. 13.1.5 Connection between periodicity and circular movement 

 

From the above picture we can see that as the angle  changes, so does the value of the 

function y=f(t). The function will start at A=0, reach its maximum at +A, then it will cross 

the x axis (again A=0), reach its minimum at –A and finally return to A=0. This will all 

happen inside a periodic interval T. As sinusoid is a representation of the circular movement 

of A, this means that T can be also be interpreted as T=3600, or 2 radians, which is the full 

periodicity of a sine wave. 

 

From the Fig. 13.1.5 we can also observe that A rotates at some regular (constant) angular 

velocity , which means that in time t, the angle  is: 

 

 = t        (13.1.2) 

 

We can, therefore write equation (13.1.1) as: 

 

    f(t) = A sin  t      (13.1.3) 

 

A 

 
y 

 

T 

A 



We have said that a periodic function repeats itself after a time ‘T’. This is applicable if we 

present the function in the so-called time space. However, the same function can be presented 

in a frequency space. To do so, we need to define the frequency as: 

           (13.1.4) 

 

If we do this, the complex relationship between the time and the frequency space can be 

visualised in a three-dimensional graph as in Fig. 13.1.6. 
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  Fig. 13.1.6 Connection between the time and frequency space 

 

A time needed to complete one full cycle, at an angular velocity of  is 3600/, or 2/. In 

this case a periodic time T is: 

 

       (13.1.5) 

 

Combining (13.1.4) and (13.1.5) we get: 

 

          (13.1.6) 

 

This means that =2f, which also implies that (13.1.3) can be written as: 

 

    f(t) = A sin2 f t      (13.1.7) 

 

The above explanations depended on two assumptions, the first one was that we start with 

A=0 and the second one that we express circular movements as a sinusoid. Neither of the two 

assumptions are really necessary. We could have used cosine function to achieve exactly the 

same effect, or we could have started not from =0, but from some other angle . If this was 

the case,  is the phase angle. 

 

This also implies that the phase space can be presented in two forms, one where the 

frequency depends on amplitude and the other where it is dependent on the phase shift (see 

Figs. 13.1.7-8). These two plots represent the frequency spectrum. 
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  Fig. 13.1.7     Fig. 13.1.8 

 

The phase shift defines by how much the sinusoid is shifted horizontally. If the phase shift is 

positive, then it is said to be a leading phase angle (or shift). If it is negative, it is referred to 

as a lagging phase shift. We decided that the rest of this chapter will not focus on phase 

spectrum, but on amplitude spectrum, which is more intuitive to non-engineers.   

 

We said that  = 2f, or  = 2/T, which is often called the fundamental frequency. The 

multiples of this fundamental frequency (2 ,3 ,4, ...) are called harmonics. This is the 

point we enter the world of Fourier analysis. Fourier ingeniously discovered that infinite 

series of harmonically related frequencies can fit virtually any periodic function. This is 

called a Fourier series. If we take a look at a discrete version of this equation, it is written 

concisely as: 

 

𝑓(𝑡) =
1

2
𝑎0 + ∑(𝑎𝑘𝑐𝑜𝑠2𝜋𝑘𝑡 + 𝑏𝑘𝑠𝑖𝑛2𝜋𝑘𝑡)

𝑁−1

𝑘=1

                                          (13.1.8) 

Or 

 

𝑓(𝑛) =
1

2
𝑎0 + ∑ (𝑎𝑘cos (𝑘

2𝜋

𝑁
𝑛) + 𝑏𝑘𝑠𝑖𝑛(𝑘

2𝜋

𝑁
𝑛))

𝑁−1

𝑘=1

                                          (13.1.9) 

 

The two alternative expressions above are called a Fourier series. To calculate the coefficients 

for the either of the two expressions above, we need to use the observation values xn: 

 

      𝑎0 =
1

𝑁
∑ 𝑥𝑛

𝑁−1

𝑛=0

                                                                                                   (13.1.10) 

 

𝑎𝑘 =
2

𝑁
∑ 𝑥𝑛 cos (

2𝜋𝑘𝑛

𝑁
)

𝑁−1

𝑛=0

                                                                            (13.1.11) 

 

𝑏𝑘 =
2

𝑁
∑ 𝑥𝑛 sin (

2𝜋𝑘𝑛

𝑁
)

𝑁−1

𝑛=0

                                                                            (13.1.12) 

 



 

The line spectra of the function is a phase space (see Fig 13.1.8), i.e. a graphical 

representation of a complicated function f(t) such as the one described by equation (13.1.9), 

but more about that in a minute. 
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    Fig. 13.1.9 

 

However, many functions are quasi periodic, or not periodic at all. Although so far, we only 

referred to fitting periodic series, the same approach can be used for non-periodic time series. 

The trick is to assume that a non-periodic wave is just like a periodic one, but the one for 

which the periodicity approaches infinity. However, we will here concentrate on discrete 

functions only as majority of time series in business, economics and finance fall in this 

category. 

 

Before we do this, in order to define Fourier transforms, we will use Euler’s formula: 

 

eix = cos x + i sin x       (13.1.13) 

 

We’ll turn this other way around and say that the cosines and sines can also be expressed in 

terms of complex numbers: 

 

cos 𝜃 =
𝑒𝑖𝜃+𝑒−𝑖𝜃

2
  and sin 𝜃 =

𝑒𝑖𝜃− 𝑒−𝑖𝜃

2𝑖
                 (13.1.14) 

 

In this case, if we substitute all the coefficients ak and bk in the equations (13.1.9) and express 

the cosine and sine terms as complex numbers, then the discrete Fourier transforms (DFT) are 

defined as: 

 

𝐹𝑘 = ∑ 𝑥𝑛 𝑒
−𝑖2𝜋𝑛𝑘

𝑁                                                                                     (13.1.15)

𝑁−1

𝑛=0

 

 

Where: 

 

Fk = Fourier transform coefficients expressed as complex numbers 

xn =  observations (i.e. the function) 

k= number of complex coefficients 

N = number of observations 

n = number of samples n = 0 to N-1 (same as k) 

i = imaginary number 

 



 

 

It is important to remember that the Fourier transform applies to non-periodic functions, as 

opposed to the Fourier series, which applies to periodic functions.  

 

So, if a Fourier series is a linear combination of oscillations, then every frequency in it 

oscillates at an integer multiple of the basic frequency. This is effectively a spectrum of the 

periodic function and it is often written as S(f). If the function is not periodic, the spectrum 

does not consist of multiples of the basic frequency but is a continuum. In this case the 

spectrum is represented by Fourier transforms.  

 

From the equation (13.1.15) it is obvious that the Fourier transform is a complex function 

(containing 'i' numbers). Effectively, the Fourier transform is an extension of the Fourier 

series because the basic periodicity is allowed to become infinitely large, which means the 

function is no longer periodic! 

 

Because we restricted the range of the function given by equation (13.1.15) from n=0 to N-1, 

this will lead us directly towards Fast Fourier Transforms (FFT). FFT is a well know 

algorithm used to calculate Fourier transforms. Excel also uses this method to calculate 

discrete Fourier transforms (DFT or Fk as in the above equation). However, there are two 

restrictions in Excel, the first one is that the maximum number of observations (or maximum 

number of Fourier transforms) is 4096 and the number of transforms is restricted to 2n, which 

means that we can only calculate the number of transforms that correspond to 4, 8, 16, 32, 64, 

…, 4096 of them. 

 

OK, let’s use a hypothetical discrete time series and calculate the discrete Fourier transforms 

for this time series. We will use equation (13.1.15) to achieve this. 

 

If we take the exponent to be 
𝑖2𝜋𝑘𝑛

𝑁
= 𝑏𝑛, then this DFT can be expressed as: 

 

𝐹𝑘 = 𝑥0𝑒−𝑏0𝑖 + 𝑥1𝑒−𝑏1𝑖 + ⋯ + 𝑥𝑛𝑒−𝑏𝑁−1𝑖   (13.1.16) 

 

 

As per Euler’s formula: 𝑒𝑥𝑖 = cos 𝑥 + 𝑖 sin 𝑥, which means that DFT can be expanded as: 

 

𝐹𝑘 = 𝑥0[cos(−𝑏0) + 𝑖 𝑠𝑖𝑛(−𝑏0)] + 𝑥1[cos(−𝑏1) + 𝑖 𝑠𝑖𝑛(−𝑏1)] + ⋯ +
            𝑥𝑛[cos(−𝑏𝑁−1) + 𝑖 𝑠𝑖𝑛(−𝑏𝑁−1)]           (13.1.17) 

 

This implies that the final result of a DFT is a mixture of real and imaginary components. In 

other words, DFT is a complex number: 

 

𝐹𝑘 = 𝐴𝑘 + 𝐵𝑘𝑖     (13.1.18) 

 

Because Fk is a complex number, it resides in a two-dimensional space, where the x axis is 

the real part and the y axis is the imaginary part of this complex number. The complex 

number is the intersection of these two parts (the real and imaginary part).  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 13.1.10 

 

To calculate the distance from the origin, we can use the Pythagorean theorem which says 

that       𝑐 = √𝑎2 + 𝑏2. In our case it is calculated as: 

 

𝑀𝑘 = √𝐴𝑘
2 + 𝐵𝑘

2     (13.1.19) 

 

Another word that is used for Mk is that it is a modulus of the complex number, or the 

magnitude. In the picture above we can also see the angle . This angle can also be calculated 

from Ak and Bk as an arc tangent: 

 

𝜃 = 𝑡𝑎𝑛−1 𝐵𝑘

𝐴𝑘
      (13.1.20) 

 

If we present this in a time space, and let’s assume that our signal is a sinusoid, then these 

values represent the following: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.1.11 

 

We can see that the magnitude Mk (which was calculated as a modulus) is in fact the 

amplitude of the wave and that  is the phase shift (which we already know). To calculate 

discrete Fourier Transforms (Fk) we can use either equation (13.1.15), or the one with the 

sinus and cosine version (13.1.17) based on Euler transformation. Although (13.1.17) might 

appear to be a bit easier to handle manually, because we will rely on Excel, equation 

(13.1.15) is in fact easier to use.  

 

Let’s assume that we have the following, very short, time series consisting of only 8 

observations: 

 

 

Mk 

 

Bk 

Ak Real 

Imaginary 
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n xn  

0 20  

1 40  

2 30  

3 50  

4 40  

5 30  

6 50  

7 40  

 

Fig. 13.1.12 

 

For every time observation at the point n, we need a frequency value at the point k. As we 

have 8 observations, we will need to calculate 8 DFTs. They will be calculated, using 

equation (13.1.17) as: 

 

𝐹0 = 𝑥0𝑒
−𝑖 × 2 × 3.14 × 0 × 0

8 + 𝑥1𝑒
−𝑖 × 2 × 3.14 × 0 × 1

8 + 𝑥2𝑒
−𝑖 × 2 × 3.14 × 0 × 2

8 + ⋯ + 𝑥7𝑒
−𝑖 × 2 × 3.14 × 0 × 7

8    

𝐹1 = 𝑥0𝑒
−𝑖 × 2 × 3.14 × 1 × 0

8 + 𝑥1𝑒
−𝑖 × 2 × 3.14 × 1 × 1

8 + 𝑥2𝑒
−𝑖 × 2 × 3.14 × 1 × 2

8 + ⋯ + 𝑥7𝑒
−𝑖 × 2 × 3.14 × 1 × 7

8    
. 

. 

 

𝐹7 = 𝑥0𝑒
−𝑖 × 2 × 3.14 × 7 × 0

8 + 𝑥1𝑒
−𝑖 × 2 × 3.14 × 7 × 1

8 + 𝑥2𝑒
−𝑖 × 2 × 3.14 × 7 × 2

8 + ⋯ + 𝑥7𝑒
−𝑖 × 2 × 3.14 × 7 × 7

8    
 

Because the coefficients that were calculated using equation (13.1.15) are complex numbers, 

as shown in equation (13.1.18), from there we can calculate the modulus for every coefficient 

using the equation (13.1.19). This means that for every value of k, we get a series of 

magnitudes for every complex number: 

 

𝑀0 = √𝐴0
2 + 𝐵0

2,  𝑀1 = √𝐴1
2 + 𝐵1

2, …,  𝑀7 = √𝐴7
2 + 𝐵7

2  

 

And finally, to calculate the amplitude at every frequency, we double the magnitude and 

average it over the number of observations: 

 

𝐴𝑘 = 𝑀𝑘
2

𝑁
      (13.1.21) 

 

The factor 
2

𝑁
 that we used to multiply the modulus, provides just the normalization of the 

coefficients for the length of the series (in fact, the normalization is achieved by dividing Mk 

by N/2, which is the same as multiplying by 2/N). The next step is to calculate the power 

spectrum. 

  

Let’s use a short example and take only 8 amplitudes and present them as a bar chart: 

 



 
Fig. 13.1.13 

 

To finish the job, we need to calculate the power coefficients for the power spectrum, which 

means that: 

 

𝑃𝑘 = 𝐴𝑘
2
      (13.1.22) 

 

The only exception is that the first coefficient P1 for the 0 frequency has to be divided by 2. 

In summary, for our artificially short example, we have: 

 

k Fk  Ak  Pk 

0 300  75  2812. 5 

1 -20 +5.85i 5.21  27.145 

2 -20 +20i 7.07  50 

3 -20 -34.14i 9.89  97.855 

4 -20  5  25 

5 -20 +34.14i 9.89 

6 -20 -20i 7.07 

7 -20 -5.85i 5.21 

 

A series of these power coefficients Pk represents the power spectrum, also called spectral 

density function. 

 

These power spectrum coefficients as presented as vertical bars against every frequency. The 

number of frequencies is the same as the number of observations, so this power spectrum for 

our mini series looks as this: 

 

 
Fig. 13.1.14 

 



As we can see, the graph is very much like the amplitudes graph, but because the first value is 

very large, all the subsequent values look very small. In practise, you would omit showing the 

amplitude for zero frequency, as it distorts the picture. The squaring of the amplitudes will 

help us see larger amplitudes even better, if we drop the zero-frequency power coefficient. 

  

However, we can make some improvements. In our case the frequencies were not defined, so 

we took them as just sequential numbers. However, if there is a time stamp for every 

observation, then we can calculate the frequencies. For example, if data represent monthly 

value, and we know that one month is one twelfth of the year, then the frequency for every 

DFT that we calculate will be 1/12, which is 0.083. In this case, 0.083 will be the first 

frequency, the next one will be 2 x 0.083 (0.166), the third one 3 x 0.083 (0.25), etc. 

 

What happens if we are taking specific measurements, like microphone recording, for 

example? Let’s say that we captured 256 points (N=256), in 3 seconds (T=3). The time 

between every point is t = T/N = 3/256 = 0.0117 seconds. From this value, we can calculate 

the sampling frequency, which is fs = 1/t = 1/0.0117 = 85.3. The sampling frequency is 

given in Hz, which means that we have captured 85.3 signals in one second. And finally, we 

can also calculate the frequency increments, which are f = 1/T = 1/3 = 0.33. When we 

calculate our power coefficients, they will be presented as bars against these frequencies, in 

other words, the first frequency will be 0.33, the second one 2 x 0.33 (0.66), 3 x 0.33 (0.99), 4 

x 0.33 (1.33), etc.  

 

You noticed that in the above simple example with only 8 observations we calculated only 

five power coefficients. There is a reason why it is not necessary to go beyond certain 

number of power coefficients. 

 

We calculated DFTs for the full range of frequencies, which in our simple case was 8. 

However, if we look at the graph below, which is a typical power spectrum graph of a much 

larger time series, we can see that the left hand side of the picture is repeated on the right 

hand side of the picture.  

 

                                 
Fig. 13.1.15 

 

This means that we only need half of the coefficients. The frequency at which the data begin 

to repeat themselves is called a folding frequency and it has been suggested by Nyquist, so 

some people call it the Nyquist frequency. Effectively, folding frequency is ff=fs/2 (if 

continue with an example for 256 points, then ff = 85.33/2 = 42.6). This frequency is also 

expressed in Hz, so it means that there is no point calculating, or showing, the magnitudes 



and power coefficients beyond this frequency. As we can see, it will always be half way 

through the range. 

 

If we take our simple 8-point case, the specific values are: 

 

N = 8 observations 

T = 2 sec  

t = T/N = 2/8 = 0.25 sec 

fs = 1/t = 1/0.25 = 4 Hz 

f = 1/T = 1/2 = 0.5 a frequency increment in Hz 

ff = fs/2 = 4/2 = 2 Hz maximum frequency value for calculating power coefficients 

 

So, the frequency increments will be 0.5 Hz, starting from zero, and will go to a max value of 

2 Hz. In this case, our final power spectrum looks as follows: 

 

            
Fig. 13.1.16 

 

That’s all there is to it. If we used Excel, the calculations would have been even easier. Excel 

has a built in FFT function and you can find it under Data tab, and then under Data Analysis 

option. Once you clicked on it, it will bring a dialogue box and you need to select Fourier 

Analysis option. This option brings another dialogue box: 

 

 

     
  

Fig. 13.1.17 

 

Our simple case of eight values is in A2:A9 and the result we would like to be placed starting 

from cell B2. What we get is as follows: 

 



 
Fig. 13.1.18 

 

Column B shows the values obtained by Excel by applying FFT (Fast Fourier Transforms), 

which in our case, because we took discrete values are, called DFT (Discrete Fourier 

Transforms). From these values, we need to calculate the amplitudes, and finally the power 

spectrum coefficients. To calculate the magnitudes, we use a simple Excel function for 

calculating the modulus, which is called =IMABS(). To convert the magnitudes into 

amplitudes, we multiply them by 2 and divide by the number of observations. If our Fourier 

coefficients were in cells B2:B9 and let’s say we want to put the amplitudes in B31:B38, then 

in every cell we have a formula =2*IMABS(B2)/COUNT($A$2:$A$9), 

=2*IMABS(B3)/COUNT($A$2:$A$9), etc. The only exception is cell B31, which is just 

=IMABS(B3)/COUNT($A$2:$A$9) as per equation (13.1.23), described below. 

 

And finally, to get the power spectrum coefficients, we just multiply Ak × Ak, except that the 

first one has to be divided by 2. We calculated them in cells C30:C38. The values for both Ak 

and Pk are given below. Again cell C31 is an exception, as per equation (13.1.27) below. 

 

    
Fig. 13.1.19 

 

Let’s just recap what we explained here and emphasise that the first amplitudes and powers 

are calculated differently from the rest.. 

 

To calculate properly normalized amplitudes Ak, we differentiate the case for k=0 and all other 

for k=1, 2, …, (
𝑁

2
 -1).  

 

For k=0, the amplitude is calculated as: 

 



𝐴𝑘 =
1

𝑁
∑ 𝑥𝑛

𝑁−1

𝑛=0

 

 

                                        (13.1.23) 

 

For k=1, 2, …, (
𝑁

2
 -1), the amplitudes are: 

 

𝐴𝑘 =
2

𝑁
∑ 𝑥𝑛 𝑒

−𝑖2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

 

 

                                      13.1.24) 

Effectively, the equations (13.1.23) and (13.1.24) can be rewritten as: 

 

For k=0  𝐴𝑘 =
1

𝑁
|𝐹𝑘|              (13.1.25) 

 

For k>0  𝐴𝑘 =
2

𝑁
|𝐹𝑘|               (13.1.26) 

 

The Fourier power is calculated as: 

 

For k=0  𝑃𝑆𝐷0(𝐹𝑘) =
𝐴𝑘

2

2
              (13.1.27) 

 

For k>0  𝑃𝑆𝐷𝑥(𝐹𝑘) = 𝐴𝑘
2               (13.1.28) 

 

Sometimes, the power spectrum is specified as: 

 

𝑃𝑆𝐷𝑥(𝑓𝑘) =
𝐹𝑘𝐹𝑘

∗

𝑁2                 (13.1.29) 

 

Where, 𝐹𝑘
∗ is a complex conjugate of 𝐹𝑘, which means that the sign of the imaginary part of 𝐹𝑘 

is reversed. Remember that if you multiply a complex number with its conjugate, you always 

get the same outcome, e.g. (a+bi)  (a-bi) = a2 + b2, which takes us back to our equation 

(13.1.19). 

 

What if you wanted to check that Excel correctly calculated the Fourier transforms? Well, 

this can be done easily. In C2:C9 below we are showing the same values calculated using 

Excel functions as opposed to cells B2:B9 that were calculate using Excel Ad in for Fourier 

Analysis. 

 

 
Fig. 13.1.20 



 

The formula for C2 is very long and it reads: 

 

=IMSUM(IMPRODUCT(A2,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*0)/8)))),IMPRODUCT(A3,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*1)/8)))),IMPRODUCT(A4,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*2)/8)))),IMPRODUCT(A5,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*3)/8)))),IMPRODUCT(A6,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*4)/8)))),IMPRODUCT(A7,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*5)/8)))),IMPRODUCT(A8,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*6)/8)))),IMPRODUCT(A9,IMEXP(COMPLEX(0,-

(IMPRODUCT(2*PI()*0*7)/8))))) 

 

The cells below C3:C9 repeat this formula, but with the relevant change in parameters. 

Essentially, we multiplying two complex numbers, hence the formula 

=IMPRODUCT(complex number1, complex number2). In our case the first complex number 

is given by A2, A3, etc. The second complex number is given by function 

=COMPLEX(IMPRODUCT(0, (2*PI()*k*n/N). As n goes from 0 to 7, we used the function 

=IMSUM() to collect all the values. 

 

If this formula scares you, you can see in the enclosed spreadsheet how it was built. In D2:D9 

we are showing gradual build up that resulted with the identical numbers as obtained with 

one single formula, or as with automated Excel routine for Fourier analysis. 

 

 
Fig. 13.1.21 

 

As you can see, although we can do it, it does not mean that we should. We should get Excel 

calculate Fourier transforms and then just calculate the magnitudes from them (using the 

=IMABS() function) and finally the power spectrum coefficients. 

 



Before we proceed, just a short digression. The complex coefficients in cells D3:D9 in Fig. 

13.1.21 are not formatted by Excel and they appear to be long and messy numbers. If you 

would like to shorten them, a combination of several Excel functions can be used to achieve 

this. In Fig. 13.1.21 cells D21:D28 are identical to cells D2:D9, but they are now showing to 

just three decimal places. The formula we used in cell D21 and below is a combination of 

Excel functions: 
=COMPLEX(VALUE(TEXT(IMREAL(D9),"0.000")),VALUE(TEXT(IMAGINARY(D9),"0.000")))

. 

 

We said that Fourier transforms is just another way of representing the same data set. This 

means that we can revert the series of Fourier transforms back into the original time series 

from which they were created. The only difference is that in the dialogue box (see Fig. 

13.1.22) the input range is the Transform series and we have to tick the Inverse box. 

 

     
 

Fig. 13.1.22 

 

Below in Fig. 13.1.23 we used a simple example to demonstrate how the original series was 

reconstructed from the inverse Fourier transforms with almost perfection. In column C we 

have Fourier transforms calculated by Excel. Imagine that this was your starting point, i.e. 

someone gave you just the list of Fourier transforms. To re-construct the actual time series 

from them, as we did in column H, use the dialogue box as described in Fig. 13.1.22. See that 

our column H is practically identical to column A, which proves the point. 

 

 
Fig. 13.1.23 Fourier analysis results 

 

To close the chapter, we’ll do one more example and show how to correctly interpret the 

frequencies in the case where the frequency interval is not Hz, but years. Our example shows 

average annual sunspot number from 1763 until 2018. Fig 13.1.24 shows only the first 27 

rows. 

 



 
            Fig. 13.1.24 

 

As we can see from cells B1:B3, we have 256 observations taken over 256 years. Cell F1 

tells us that the folding frequency is 0.5, which means that we will calculate the power 

coefficients only up to this frequency. We will start with the first frequency equal to 0 and 

then add 0.003906 increments (see cell F2) until we reach the value of 0.5, which is the 

folding frequency. 

 

From Fig. 13.1.24 in column C we can see the DFT coefficients calculated by Excel, column 

D shows the amplitudes, column E the frequencies, calculated as stated in the paragraph 

above, and column F shows the power coefficients. All of this was calculated as explained 

previously in this chapter, so we will not repeat explanations here. However, we will show 

the final results and provide some further explanations. Fig. 13.1.25 depicts the final result as 

a chart. 

 



 
Fig. 13.1.25 

 

In Fig. 13.1.25 we are showing all 128 coefficients against the frequency. It stops at 0.5. We 

know that if we continued until all 256 coefficients were shown, we would get a mirror image 

picture (see fig. 13.1.15) of the first 128 coefficients, which is the reason we stopped at 128th 

coefficient, which corresponds to the frequency of 0.5. 

 

If we eliminate the zero frequency, to see better, we get a graph as in Fig. 13.1.26. Next to it 

is the same graph, but the x axis is shown as logarithmic. Some software packages do this, so 

we just wanted to show that it has no relevance to our results. 

 

    
Fig. 13.1.26 

 

What we can is that the highest magnitude takes place at the frequency of 0.0898 (see graph 

and cell F28 in Fig. 13.1.24). But what does that mean? Simple, if you take a reciprocal of 

this number (remember T=1/f), you will get the value of 11.13. This simple step has moved 

you back from the world of frequencies into the world of time but expressed as periodogram. 

Because our values are annual, 11.13 are the years and it means that sunspots have 

periodicity of approximately 11 years, which any astronomer can confirm is the fact.  

 

I conducted another experiment, not shown here but you can find it in the attached 

spreadsheet where I calculated the power coefficients for monthly sunspot data starting from 

May 1934 until August 2019. This covers 1024 observations, so I calculated the same amount 

of power coefficients. However, the point to remember is how the frequencies were 

calculated and converted back into the time domain. We have the following calculation: 



 

N = 1024 observations 

 

t = 1/12 = 0.08333 this is the sampling interval, because we have monthly data 

 

ff = 1/2t = 1/(2*0.08333) = 6 is the folding frequency 

 

fs = 1/t = 1/0.08333 = 12 is the sampling frequency in months 

 

f = (2ff)/N = (2*6/1024) = 0.01171875 is a frequency increment 

 

T = (Nt) = 1024*0.08333 = 85.3333 is the number of years as a decimal number 

 

If you subtract from the end data the start date, you get 85 years, or 1024 months as the total 

time. As a decimal number, this can be expressed as 85.3333. This number is also a 

reciprocal if you take 1/f (1/0.01171875).  

 

When I completed my calculations, the highest amplitude is associated with the frequency 

value of 0.09375. If we take the reciprocal value of that number (1/0.09375), we get 10.7 

years, or if expressed as an integer this is 11 years. Again, the same periodicity as for the 

annual data. The key here is to realize how to create and convert frequencies from the time 

domain and back.  

 

To assist with different time units, sampling frequencies and increments in time, as well as in 

frequency, we list here some of the fundamental equations to be remembered. To begin with, 

here are the symbols that we will use: 

 

N = Total number of discrete data points taken  

t = Time between data points (sampling period) 

T = Total sampling time 

fs = Sampling rate (in Hz, for example) 

ff = Folding frequency or Nyquist limit 

f = Frequency increments 

 

We’ll define the time increments t in which the signal is recorded as:  

 

∆𝑡 =
𝑇

𝑁
=

1

𝑓𝑠
        (13.1.30) 

 

From there, we can extract any of the variables: 

 

𝑇 = 𝑁Δ𝑡 =
𝑁

𝑓𝑠
        (13.1.31) 

 

𝑁 =
𝑇

Δ𝑡
= 𝑓𝑠𝑇        (13.1.32) 

 

   𝑓𝑠 =
1

∆𝑡
=

𝑁

𝑇
       (13.1.33) 

 

The folding frequency (Nyquist limit frequency) is defined as: 



 

𝑓𝑓 =
𝑓𝑠

2
=

1

2∆𝑡
=

𝑁

2𝑇
       (13.1.34) 

 

The frequency increments f, which will be used to create frequency bins are defined as: 

 

∆𝑓 =
1

𝑇
=

1

𝑁∆𝑡
=

𝑓𝑠

𝑁
=

2𝑓𝑓

𝑁
     (13.1.35) 

 

As we already know, according to the Nyquist criterion, the maximum number of DFTs that 

should be calculated should not exceed fs/2. This mean that there is a number k, which we 

multiply with the number of frequency increments f, i.e. kf, which should equal to fs/2.  

 

We define kf as: 

 

𝑘∆𝑓 =
𝑓𝑠

2
          (13.1.36)  

 

From (13.1.36), we can extract k as: 

 

𝑘 =
𝑓𝑠

2∆𝑓
=

𝑁

𝑇

2
1

𝑇

=
𝑁

2
=

𝑓𝑓

Δ𝑓
         (13.1.37) 

 

From there we can provide alternative equations for (13.1.34) as: 

 

𝑓𝑓 =
𝑓𝑠

2
=

𝑁

2
∆𝑓 = 𝑘Δ𝑓         (13.1.38) 

 

In Fig. 13.1.27 below we show how some of these variables can be extracted from one another. 

The printout is too small, but the actual spreadsheet with all the solutions is available together 

with all other Excel resources for this book. 

 

 
Fig. 13.1.27 Excel solutions for extracting various variables 

 

Just to have total clarity about how some of these variables are used and interpreted, we’ll go 

through one more brief example, this time typical for the engineering community (using Hz). 

 

As an example, we take measurements over 2.56 seconds (T=2.56) at the rate of 100 Hz, 

which is fs, i.e. 100 readings per second. This means that in total we have 256 observations 

(N = T × fs). From there, we can calculate that we were taking samples every 0.01 second 

(t=T/N=2.56/256).  

 



As we will be using Excel that calculates DFTs using the FFT algorithm (more about that 

very soon), only 2n number of Fourier transforms can be calculated (8, 16,32,64, 128, etc.), so 

we decide to go for 256 DFT coefficients (k=256).  

 

From there, we calculate what our frequency increments will be (f=1/T or f=fs/N), which 

is 0.39. This means that the frequency bins will be:   

 

f0=0,  

f1=0+0.39=0.39,  

f2=0.39+0.39=0.78,  

f3=0.78+0.39=1.17, …,  

f256=99.22+0.39=99.61 and  

f257=99.61+0.39=100.00.  

 

This covers the full range of frequencies from 0 to 100 Hz. However, we know that we do not 

need to cover the whole range. We can calculate discrete Fourier transforms up to the Nyquist 

frequency, or the folding frequency (ff=fs/2=50Hz). The total number of discrete Fourier 

transforms that we need is 128 (k=128). Now that we have the frequency bins and know that 

we need only 128 Fourier transform coefficients, we can proceed with the calculations. 

 

Fortunately, if we do not handle engineering data, we do not have to worry about majority of 

these details. We still just need the folding frequency and frequency increments.  

 

And finally, what happens if you have longer, or shorter time series than 2n number of 

observations? If it is longer, you just do not take into calculations any observations beyond 

2n. If it is short, you just add zeros to the missing time intervals to reach the 2n number. Here 

is an example. 

 

You have two annual time series, one starts in the year 1953 and finishes in 2019 and the 

other one starts in 1963 and finishes in 2019. This means the first one is 66 years long and the 

second one is 56 years long. You want to calculate 64 discrete Fourier transforms for each 

time series and compare them. For the first one, ignore the first two years and calculate DFTs 

between 1955 and 2019. For the second one, just add eight zeros below the actual readings of 

the observation so that in total you have 64 observations (though the last 8 will be zeros). 

This is called “zero padding” and will give you the correct value of the DFTs even if your 

time series was shorter. 

 


